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Effects of level broadening on Che magnetothermal oscillations in 

two-dimensional electron systems 

A Isihara and Y Shiwa 
Statistical Physics Laboratory, Department of Physics 
State University of New York at Buffalo 
Buffalo, New York, 14260, USA 

Received November, 1984 

Abstract.  By a method which modifies Dingle's original one, 

broadening effects on the nu-tgnetotherm.il oscillations in two- 

dimensional electron systems are treated analytically and 

relevant thermodynamic quantities are evaluated explicitly. 

• ... 

r- . v"? 

In particular, the behaviors of the chemical potential and specific   yV 
y.-.-': 

heat in a strong magnetic field ure investigated.  Landau 

level broadening does not affect the period  - but causes 

significant reduction of the amplitude of the oscillations. •"•'.-j 

For its sensitivity, the oscillating pattern is a good indicator :'•"••' 

of level broadening, while the period of oscillation can be kV.'"' 

used for the determination of the effective Bohr magneton. ;!£•*: 
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1.  Introduction 

Two-dimensional electron systems which are formed in Si inversion layers or 

GaAs/GaAlAs super lattices show very unusual properties especially in strong 

magnetic field.  While these properties have mostly been studied under the 

isothermal conditions, it has been pointed out (Isihara and Shiwa 1983 

Zavadrki and Lassni/ig 1964) that their temperature oscillates very strongly 

when the magnetic field is varied adlabatically.  The significance of 

these oscillations is due to the lack of electron notion in the direction of 

the magnetic field.  This makes the conversion of the field energy into 

the kinetic energy of the electrons effective. 

In our previous work, hereafter to be called I (Isihara and Shiwa 1984) 

we investigated the case without level broadening.  Since in actual systems, 

impurity scatterings cause level broadening, we give in the present article 

a somewhat comprehensive treatment of the case with level broadening. 

Different from Zawadzkl and Lassnig who employed a numerical approach, we 

shsll make an analytical approach to the magnetothermal ef it  and derive 

explicit formulae for relevant physical quantitites.  For this purpose, 

we shall employ a method which modifies Dingle's (1952) for the de Haas- 

van Alphen effect.  This is a phenomenological approach, but gives the 

advantage of being applicable to several different cases.   Therefore, we 

shall treat the cases of Lorentzlan as well as elliptic broadenlngs.  For 

2D electron systems, the latter type of broadening has been introduced 

effectively by Ando and Demurs (1984).   Although the final broadening 

effects depend on the magnitude of the respective broadening parameter, 

it is generally considered thst elliptic brosdening describes low temperature 

phenomena well. 

In actual 2D systems, there sre Coulomb interactions. We remark that f • 

Isihara, Tsai and Wadati  (1971) showed that these interactions lead to -\«*% 
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a reduction of the amplitude of 3D dHvA oscillations similarly to the casa of 

Dingle.    More recenlty, Shiwa and Isihara (1983) treated dHvA oscillations 

In 2D electron systems with Coulomb Interaction. 

The magnetothermal effect requires the evaluation of the entropy- at 

finite temperature.  This is a difficult task in the presence of impurity 

scattering end e strong magnetic field.   However, the Dingle method can be 

used effectively. 

The energy levels of 2D electrons can be written as 

en- (2n+l)uBH • fn/h*.  n - 0, 1, 2, ... (1.1) 

where u - ep72mc is the effective Bohr magneton with the effective mass n, 

we shall start with the case without the spin-magnetic field coupling energy. 
f 

As can be guessed, this couling causes a shift in the phase of the oscillations. 

• . . T--V 

-'• .% 

c 

-.% p° • eK/2m c is the real Bohr magneton with the bare electron mass m , and 
B .     o o >:.*.v 

g Is the effective Lande's g factor, H being the magnetic field. 

We note that the magnetothermal oscillations are primarily due to the 

orbital motion of the electrons as in the case of the dHvA effect.  Therefore, 

e 
In the next section, we shall derive a new formula for the grand 

potential of a 2D electron system with level broadening by a mehtod which 

modifies slightly the original Dingle's.  Section 3 gives a basic formula for 

the magnetothermal effect for arbitrary broadening and low but finite temperatuers. 

In Section 4, we present an explicit limiting expression for the 'magnetothermal 

effect at absolute zero.   At the same time, we present a new specific heat 

formula for the case with level broadening.    As we shall see, the behavior 

of the specific heat is very crucial to the magnetothermal effect.   Finally, 

in Section 5 we present explicit numerical results and discussions. 

c 
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2. Effects of Level Broadening on the Grand Potential •/.'/, 

In Chi« section, we treat level broadening by a method which modifies 

•lightly Dingle'a original theory.  For analytical simplicity, let us p"- 

consider an idealized 2D case in which gu0/2 is set equal to n so that the 
B D ** -"'.i 

grand pothetlal becomes !>:'.>: 

Ü(u) - -kT _>[1+ ••(|l"en)l (2.1) p* 
n 

where B • 1/kT is the reciprocal thermal energy and u    is the chemical 

potential.  We write 

where 

fi(p) - \  iJo(u+uBH) + -|flo(p-iJBH) (2.2) 

nn(w) - -kT £ ln[l • e
6(p" cn }) (2.3) 

c° - (2n+l)nBH (2.4) 

Since the two terms in equation (2.2) differ from each other only in the 

sign of v  H, we derive a formula for fl (y).  This is then equivalent to 
D O 

treating the case without the spin contribution. 

We Introduce the density of states • (c) per unit energy Interval 

given by 

* (e) - 2p_H^ _«<e- c°) (2.5) 
°       * nM  n 

where A is the surface area, m being the electron mass.  We express 

equation (2.3) by an integral 

S2o(vi) - -kT | de *o(e) ln[l+e'l(,*~e> ] (2.6) 

Integrating twice by parts, we find 
3f (t) 

Ro(w) - l  de *2(c)[ -£-  ] (2.7) 
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where 

•2(e) - JCdc'JC de" ^(e") (2.8) 

VE> 

o        o 

e +1 
(2.9) 

So far the calculation is formally exact.    We now replace Oirac's 

delta functions by Lorentzian functions of a half width U/T: 

1A (2.10) 

where, and what follows in this article, we have set -fi  « 1 and 2» -1, 

and a - 6uRH. 

At low temperatures, -3f0/3e falls off very rapidly on either sides 

of y. For fti»l and WT»1, ths n sum may include all negative integers, 

enabling the use of the Poiaeon summation formula« 

The details of the calculation and a comparison with the original Dingle's 

out 
method are given respectively in Appendix A and B. 

The general case in which the electron spins are included can be 

treated in a similar way.  ' The corresponding grand potential is given 

for arbitrary g by 

p   3n n 

*.    *   «4.1  #   co«<irt/Y) cos(9fr£) 

, . _ '       n l-l l  sinh(* t/a) 
UJ'^ f*f/,'**lY.m*/|. . __ ....  ^ 

As we see, the broadening effects appear only through the functions 

D(r) and W(T) which are defined by 
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2 
W(r) - exp[-ir/(Ta )] (2a2) ;.-• 

D(D - — f.        ts  e     ;     r-  j   ,»r/<.H   (2.13) ^ 
iT k=l  k" 2Ta     '  f • * 

Note that W(r) is simply the Fourier transform of the characteristic %'-"._• 

Lorentzlan form in the sum of equation (2.10).   As each energy level is £.';.. 

broadened in accordance with this form in energy space, the contribution 

from the level to the grand potential is reduced by the amplitude, reduction \... 

factor W(r) such that the higher harmonic contributions are progressively i^, 

reduced.    Moreover, level broadening affects the non-oscillating part 

of the grand potential through the function D(T).  Note that 

IKO) - 1 (2.14) fj 

so that the non-oscillating part i8 reduced to that given by Isihara and 

e •*• 
Kojima (1979).   As broadening increases, that is when T incrases, D(r) 

decreases.   This means that the spin paramagnetic contribution becomes •-*• 

relatively more effective, while the oscillating contribution due to the 

orbital motion of the electrons is weakened. 

is'-- 
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3.   Impurity Effects on Magnetothermal Effect 

The temperature changes under adiabatic variations of magnetic 

field are given by 
• 

dT . . .An. dH (31) 

*3T 'H,n 

where n is the electron density,and the entropy S is related to the grand 

partition function by 

s - h [ffllniW <3-2> 

--(3rn>H.A.y 

The grand potential ß has been evaluated as in equation (2.29). In order 

This yields the Important relation between y  and Y, 

To  T .   t-1 . _iTil 
(3.4) 

sinhC-11-21) 

r* -i r 

L -^f. 

r. 

to perform the differentiations of the entropy as in equation (3.1), It Is       fv':;~; 

necessary to know the behavior of the relaxation time T which has been 

introduced phenomenologically.  Let us assume that T is independent of field 

and temperature, although it may depend on the electron and impurity 

concentre t ions. •*"" 

Since the electron density is kept constant in the derivatives in equal- '^-V 

tion (3.1),while the grand potential has been obtained for a'given chemical "•[•', 

potential V,  we need the relation for the number density n: 

.   "* - -<fW '        <3-3> 

V 

'-••-, 
a - .%-"' 

• • . ^ 

••;'. 
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where (* - 1, 2m « 1) 

1_  2im 
Y =   2 
o   a 

1   »i_ 
Y '  2 

a 
(3.5) 

are dimensionless parameters.  Note that 1/y represents the experimental 

variable such as n or H, while 1/y measures the chemical potential by 

2 
the field energy a . 

For g «= 2 and T - 0, equation (3.A) becomes 

1    1   2 _ W      lit 

i   2   y^fo , 
- - + - tan [ L—-] 
Y  *      1-W cos(^) 

The latter formula is valid for W = exp(-2TrD<l. 

For g • 2, the entropy is obtained in the following form 

(3.6) 

(3.7) 

(3.8) 

4*S  27,2 + 4£iE„  L(^5 
Ak  38 O 

sinh(-^-) 

(3.9) 

where 

L (x) • cothx - — 
x 

(3.10) 

is the Langevin function.  It is worth noting that both 1/Y of equation (3.A) 

and S of equation (3.9) do not have the term D(T) which appears in the erand 

potential and that the effects of level broadening appear only through 

the function W(D. 

We compute now the two relevant derivatives of the entropy. 

L . 

r   < 

" 
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Let us introduce 

Aka 2  
H(3H }T,n 

Aka 
T(^-) 

2 M3T 'h\n 

(3.11) 

(3.12) 

After straightforward but somewhat lengthy calculations, which require the 
I 

derivatives of the chemical potential, we arrive at 

su - i •ji**'V(i')-u'cothi'+ir)rL(r)] 
H    i * 

-C2CE«i(i'cothi'+tP)+t]Cl+2Ei'c,r -ll.lX(t') 

Q 

»•-§•* i* {f2L'(t')-r2(L(ii'))2} To  • I 

(3.13) 

-2C[Zs.t'L(l')]2»[l+2EÄ'cor
1 

where for simplicity we have used 

r v r  I    »'or  2-£ 

(3.14) 

1 coa(U)     ;   M£ sin(^)   a .  r  _n_ ct - W sinh A*  »  V  " sinh r '  r  27rF  Ta2 

The nagnetotherMl effect is expressed in a dimensionless way by 

(3.15) 

dT m ^H dH 
* " S- H T 

Formulae (3.13) and (3.14) are derived for low but finite temperatures. 

(3.16) 
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The formula in equation (3.14) can be used to derive the electronic 

specific heat at constant area and magnetic field through 

2 

'A,H TT 
ST 

(  pti f^i^J (3.17) 

(3.18) 

The first term in equation (3.1A) yields the linear specific heat 

which is the correct limiting expression in the absence of a magnetic 

field. 

In an arbitrary magnetic field, the specific heat decreases 

exponentially with temperature (Shiwa aid Isihara 1984).   However, 

so long as r, the broadening parameter defined by equation (2.13), does 

not vanish, the linear specific heat is retained.  Indeed, we find 

(3.19) 

near absolute zero 

. 4-T[ i + 2W cos^h)  - w 
A'H   6 1-2WCOS (ir/v)-H^ 

,-\>"V wW W v • • • •"• -s .'• .'•.••"/»*•.•.% .'•• 
l.'A'A.X.1.UI'.->..--...r.'-.,l.VV .-..••• nj 
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4.   Magnetothermal Effect at Absolute Zero 

The magnetothermal effect as expressed by the dlmensionless 

quantity HdT/(TdH) depends on the two entropy derivatives S„ and S_ 

given by equations (3.11) and (3.12) respectively.   Note that these 

two quantities are also dlmensionless.  In the natural units which have 

2 
been adopted in the present article, the field energy a has the dimension 

of a reciprocal area. 

For absolute zero, the two entropy derivatives can be given explicitly in 

terms of trigonometric functions as in Appendix C.   Our analyses 

of the case of absolute zero can be summarized as follows: 

First, level broadening eases the abrupt variation of the chemical 

potential as expressed by the dlmensionless variable Iff defined by 

equation (3.5) when 1/Y  in the same equation changes.  The latter variable 

represents either the electron density or the magnetic field.     This 

easement is understandable because in the presence of broadening, the 

chemical potential does not jump from one sharp Landau level to another. 

Actual broadening effects on the chemical potential must be seen numerically. 

Second, level broadening brings back the ideal linear specific 

heat which vanishes in strong magnetic fields if there is no broadening. 

Interestingly, this important change in the electronic specific heat takes 

place irrespective of the magnitude of broadening, if it exists.  In a strong 

magnetic field and in the absence of level broadening, the electronic 

specific heat varies exponentially with the temperature.   Since S ' 

in the denominator of equation (3.1) is essentially the specific heat, such 

a change from the exponential to linear variations causes a considerable 

reduction in the magnetothermal effect. 

Let us now examine broadening effects more explicitly. 

',... 

L„ 

r .-;• 

••"•V 

*"•••• 

-*-'- — • -*-•-• IT • ^**^^^^* 



>/ 

m»m»mamP»P»»88mja»eam8i»m»| ,,,,,, , • j ^P^^^y^P 

Two typical numerical values of the ratio S /S are given In Table 1: 

Table 1 
Ratio of Entropy Derivatives at 0 K 

I w        lVs
Tl 

0.3 

3.0 

0.7408 

0.04979 

0.9852 

0.2995 

In this Table, we have chosen two values of the broadening parameter f which 

la defined by equation (3.15).  Interpreting that T • x/2 -  nu/e as the 
8 

scattering tine (Brallsford 1966), where p Is the mobility, we find for 

SI Inversion layers 

w 0.19m 
JJ - o.30A7(——^][ 
ZT m 

s 

10      i 
,  2„-i -i. 

u(cm V s  ) 
meV 

where • ai.J m are the free electron and effective masses resractlvely. 

The notation y for mobility is used here only; it is the chemical potential 

everywhere else throughout the present papder. 

The cyclotron energy can be expressed as 

0.19m 
Xu - 0.6093 H[  = 

c m 
-] meV 

where the field H is measured in Tesla.  We find then 

Hl 
10 

.    2„-l -\\ 
p(cm V s  ) 

V« have estimated from this expression that f can be around 0.3. For 3D, 

McCombe and . Idel (1967) adopted the same value. The case of r "3 has 

been given only for comparison. 

12 
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5.  Results and Discussions 
| . -.'• 

In our grand ensemble approach, the two relevant entropy derivatives 

with respect to H and T require the evaluation of the corresponding derivatives 

of the chemical potential.  For low temperatures, these are obtained 0\'I- 

by differentiating equation (3.4). y"v 

The Important ratio SH/S_ which determines the magnetothermal effect        » - 

depends on how the chemical potential u is related to the experimental .*•>••' 

variables such as electron density n and the magnetic field H.  Note that 

equation (3.A) represents the chemical potential through y~    • "/"n"* as 

a function of the ratio 2im/u H - y      .  Since their relation is fundamental B    o 

in our theory, we have Illustrated in figure 1 the case with r «0.3. 

2 In this graph, the three curves correspond to f,  -n /a - 0, 1.5 and 5,0 

respectively.  The first curve represents the case of absolute zero at which 

the variation is the sharpest.   If there Is no broadening, the variation 

at" 0 K becomes zig-zag as in our previous work (Shiwa and Islhara 1983). 

A« the temperature increases, the parameter C increases.  The case C • 1.5 

can be considered intermediate, corresponding roughly to 1.0 K and 2 T. 

Such an intermediate case is important for experiments.  The curve for 

t,    - 5.0 is almost straight, indicating a high temperature an'd low field 

relation. 
. i 

2 
Figure 2 illustrates in • the Intermediate case of  Z,  • v  /a- 1.5, how 

3 
changes in 1/y  take place about odd integral valuesof 1/y  when the 

A ° 
broadening parameter r  is changed.  As we see, the smaller r   the sharper 

' a, 
the variation of 1/y about such points.   The case r - 3 Is almost straight 

c 

c 
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IVY 

as in the case of £ - 5.0 in figure 1.  That is, both r and £ play similar 

roles in bringing 1/y close to 1/Y • 

Figure 3 shows the magnetothermal effect at two temperatures corresponding 

2 
to n /a- 5.0 (left ordinate) and -1.5 (right ordinate) but at the same 

broadening parameter r - 0.3.   The arrows indicate the ordinate to be used. 

These two curves should be compared with figuures 3 and 4 in I.  We learn 

2 
that the effect of broadening is strong in the low temperature case of IT /O- 

1.5 where the amplitude is reduced nearly 1/100, but is not very significant 

2 
in the high temperature case of JT /a- 5.0.  The former corresponds roughly 

to 1 K and 2T.   The region of the abscissa corresponds electron density 

12  -2 
of order 10  cm  at 2T. Also, comparing the two curves in figure 3 

with each other, we learn that the oscillations are more sinusoidal in the 

higher temperature case. 
/ 

In view of the coupling between the temperature and broadening effects, 

we have illustrated in figure 4 two oscillations for absolute zero. The 

left ordinate corresponds to the case T  - 0.3 while the right to f - 3.0. 

We find that the amplitude is reduced roughly by a factor of 1/30 due to 

the increase in broadening.   Associated with the amplitude reduction, the 

oscillating pattern is also changed in, an interesting way. 

It is important to observe in the above two figures that the nodes appear 

close to, especially odd, integral values of 1/y >  at low tempera- 

tures or small F and that the period stays constant: 

A(1/YO) - 2 (5.1) 

regardless broadening.   On the other hand, the pattern of the oscillations 

depends on broadening.    The changes about odd integral values of the 

abscissa are sharper than those at even values.  However, note that the 

phase depends on the g-factor.  We have chosen g - 2 for theoretical con- 

venience, but the case g - 0 is also interesting.   We shall comment on 

u. 
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4 i 

the phase in more detail shortly. 

The oscillations become more sinusoidal and the nodes deviate from 

(odd) integral values when the temperature is high or the field is low, 

as In the case without broadening which was discussed in I.  A single 

2 
parameter a- a /kT plays an important role in this respect. 

It is important to remark that the presence of broadening causes 

the zero temperature limit a'-»- •» different from the case without 

broadening.   We have already pointed out that broadening restores 

the linear specific heat.  Since in the absence of broadening, the 

specific heat is exponentially small, an »xparimental determination of the 

temperatute variation of the specific heat becomes very important. 

\     Since the specific heat depends sensitively on broadening, we have 

investigated the zero temperature limit of the magnetothermal effect. 

Our results for ?  - 0.3 and i^- 3.0 are Illustrated In figure 4.  The 

arrow indicates the ordinate to be used.   In the former case,  steep 

changes occur near odd integral values of 1/y . Its oscillating pattern 

is significantly distorted from the sinusoidal type which is observed for»' 

r "3.0.  Hence, by observing'such pattern changes, level broadening 

may be assessec'. 

As in figure 3, the'period of oscillation stays constant.  Together 

with the position of the nodes at low temperature and brodaenlng, the 

effective Bohr magneton may be determined from the magnetothermal , 

oscillations. 

However, for actual 2D electron systems it is necessary to extend 

our consideration.   First, let us examine the choice of g - 2. 

This is a special case which simplifies analytical expressions, but in actual 

Inversion layers, the effective g factor is enhanced. 

In general, the spin factor enters the grand partition function as a 

' phase factor, and the arbitrary g case can he generated from the case of g - 0 

*& 

y 

SV-. 
•.-.--• 

>-•. 
;.-.• 
•:,- 
::•:-:•! 
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in accordance with 

coslth    •» \  {cosf.it(i + | jj) + cosln(i - | £)) 

On the other hand, the case g * 0 is similar to the  idealized case except that 

the phase in terms of the variable 1/y is shifted.       For example, in 

the case corresponding to Frg? 5", the sharp increases will take place for g - 0 

at even integral 1/y .  Other than that, there is no significant change in 

the oscillating pattern.  This is understandable because the oscillations 

are primarily due to the electron's orbital motion. 

The electrons in Si inversion layers have the effective mass m - 0.19m . 
o 

The effective Lande's factor g and the effective mass modify the phase 

factor in a combined form of g m /2m .  This results in a  phase shift of 

i 0,3 approximately if g is 3 and the effective mass is 0.19m . 
o 

A comment must be given on the replacement of the 6 functions by 

Lorentzlan functions in view of the work of Ando and Uemura vl974) in which 

an elliptic form was adopted.  They arrived at this form for the, central 

part of each Landau level by neglecting Landau level couplings.  On the 

other hand, Gerhardts (1976) arrived at a Gaussin form for level broadening. 
A 

In what follows in the present article, we remark on the case of elliptic 

broadening. 

With a proper normalization, the use of an elliptic form amounts in 

our present  theory to    havijM 

CD *\, 

Vc) Aar  2T, %2 Ov2,l/2 Aar  ZTr.        v,/ oxz, 
»S"*11 _T  (c_En >   ' o 

&£&£^^ 

K; • 
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w. 

a 
f 
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17 fosw 
where t la generally different fro« x of the Lorentzlan case. I 

Adopting the above expression and following the same procedure as before 

w« find that the c dependence of • (e) la not changed at all but the 

2we 

1« replaced by 

•• •> 

damping factor of the Lorentzlan case: I 

Ji<?"k> L» 
*•-^  

f'k 

where J. Is the Bessel function of the first kind, and "•*•£"-'. 

I" »ir/ia. p*""1 

Since f and r' are different, a direct comparison of the two cases Is 

somewhat difficult.   However, as we remarked before, the scattering time 

T • T/2.  Hence, it Is meaningful to choose t - T/2.   Then, both ,' 

elliptic and Lorentzlan forms will have the same height. '    Figure .-.•'''-'. 

5 illustrates   the magnetothermal oscillations for the elliptic form *-V*V- 

J" - 0.6 and IT
2
./* - 1.5. fc~ 

2 
While the parameter choice * /a- 1.5 for this elliptic case .-_y.\ 

is the same as the corresponding one in figure 3, it is interesting to • •:?<£• 

observe that the oscillating pattern is similar to the curve for r - 0.3 "  " 

in figure 4.   The nodes and period appear as in the Lorentzlan case, •-!•"">' 

but the amplitude is much larger In the present elliptic case due;to the 

lack of a long tail in the elliptic broadening function. 

Although it is somewhat beyond the scope of the present article to 
broadening 

discus« In detail the above two case«,  both cases seem to  yield similar 
A 

result« if the respective broadening parameter is chosen suitably, L 

,*•;> 
.-.•-." 

•:v\-: 

In order to apply the present theory to actual systems, a question .y«| 
• •".'•*.• 

L_ 
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C , -  1.5x10"U cal/K 
el 

Cc. -  6.9xl0"
12- cal/K 

v. • . 

remains as Co the observability of the effect.   Although discussions of        i'-'r 
A .-• 

> 
sJ4r 

•.-, 

experimental problems are also beyond the scope of the present article, 

we try to conclude this article by addressing this question..  Note in this 

resepct, three-dimensional cases have been observed. 

For this purpose, let us consider a model MOSFET (metal-oxide-field 

effect transistor), consisting of a 50A thick Ti gate, a 4,000 A thick >:'>:} 

SiO- layer, a 50 A thick inversion layer and a 500 um Si layer.  The ->-\< 

surface areas of all these components are assumed to be the same, because then 

the area does not affect our following estimate.   Hence, let us take a 

unit area for all the components. 

Let us consider the case in which the electron temperature is dropped by a 

few ten percent due to       a field change of a few percent at 0.1 K. 

Under the adlabatlc condition, the energy thus released by the electrons 

la expected to be transfered into the system.    For a typical electron 

12  -2 About   -13      2 density n * 10  cm , the heat energy thus generated is  3x10   cal/cro . 

On the other hand, the heat capacities of all the components are 

3 
estimated for 0.1 K based on the T and and T laws as follows: 

CTi -  3.9xl0"
12 cal/K 

CSi02- 8.1xl0"15 cal/K 

r •"•":*! 

m 
•i 

The inelastic scattering time is of order W  sec. so that wo assume equilibrium 

established rather quickly under the adiabatlc condition. 

From the above figures, the heat capacity of the MOSFET is estimated to be 

•-'.-•1 

•••-•-•-•-•»•••••• ••••••• •• *;•-.••••• ••••••••••.,.••.••.••••--••••••,••••• .... ..... ,-.,• , ,-, 



715 r* ."*_.^*j"". «">T.«T>   > ̂ ^^TT?Tl '> '.- "".• •'. •'. K ••• •-•• *."» •' :••• ••• •••••• '•• •• ••,-.-.-.—v 

19 

lxlO~  cal/K at Ö.1K.  If the above heat energy is entirely absorved by the 

system» the temperature change can be around 0.03 K.  Since we have neglected 

the specific heat of the thermometer and its leads, the actual temperature 

change can be smaller.  On the other hand, by reducing the temperature 

and Increasing the magnetic field and its change, one can expect larger temperature 

changes.  Therefore, the magnetothermal oscillations may be observable. 

At least, two-dimensional systems are more favorable than the case of bulk 

as far as the energy conversion is concerned. 

This work was supported by the ONR under Contract N000U-K-0387. 
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Appendix A  Evaluation of Ü 

The Poisson summation formula states: 

?    f(n)   -      dsf(s)  + 2 I        dsf(s)  cos(27rks) 
n—• * k«l  ' 

The series in equation  (2.10)  is then expressed by 

A    / » ,  .k    -2irDc ,irke. i    * •    (O    -  ~  {TT+21T   I   (-)       e COS(^r-)J 
° 2lt2 k-1 a2 

(A.l) 

(A. 2) 

where a "PDH and r has been defined by equation (2.13).  This dimensionless 

(A.3) 

boradening parameter is related to the Dingle temperature T by 

Tw , 

*D  kl» 

u) being the cyclotron frequency. 
c 

Equation (2.8) yield» 

*2(€)   2^2   ,2 w k2 „2 ^ k2 ,2 

Introducing this expression into equation (2.7) and writing 

n (y) - n (w) + Q_ <v> o       O       v 

we obtain 

0o(M) 

r     2      4 3f 

21T J    2    6       3e 

(A. 6) 

o ' 

where D(r) has been defined by equation (2.13).  Note that the series in 
> - • 

equation (A.4) are characterized by the reduction factor W defined by equation 

(2.12).  The functions D(T) and W(f) are related with each other by 

>(T)    -iff 
If * 

w(D 
*    dt tnU+tK (A.7) 

We also find 

• & •:>>, ,v:v^^;vX ::-:^:v>-:-::x:^:^?::-;::-::-;::-::>:v;>v-:;>::--.:--: g 
• • -••-•-•- 

i:-, 

C 

. • .v 
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Not« that in the limit T « 0 this reduces to 

2     2   v2 

P    3n 

in agreement with Isihara and Kojima (1979).   Here, n - ßy and y- a/n. 

The integral in the oscillating part can be obtained  as follows: 

Xk ' "8     J de 3T cos  (—} 
9 

o 

x .irk , 

2,      .TTK.r.    '    COS(^} (A.11) *^cos(—) 
ri      e    cos (— 

dx  f- 
<ex-l>2 

.irk, 
cos (^~) irk 

Substituting 

A k+1 r°° 3f 
-   I   i-i—- e      de cos(—j)(^ 
V -k-i k      0 

Note that ß (y) represents the non-oscillating part and iMp) is the 

, oscillating part of the grand potential. 

The integral in equation (A.6) can be obtained easily.  In the 

neglect of exponentially small terms, we arrive at (Appendix B) 

- •.- \ 

.".- 

u: 

tt 

where 

'.m       f". exp(x+i6x) 
I (6) -  dx *x  ,                               (A.12)        7^ 

' (• +1) 

&&££&^^ 
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C/i-v 

we 9«t 

 I(TT6) (A. 13) 

H«nc«, 

Therefor«, 

AQ      J     /-,k+V2ltrk    cos(nkA) 
i( *M' - "   2     2 

itß k-1 k sinh(ir k/a) 

The appearance of the exponential factor exp(-2*rk) is characteristic of 

Lorentzian broadening.  Note that thia factor  decreases rapidly wirn k. 

Adding the two contributions, we arrive at a basic formula: 

0 W  . . Jrv2+ J» . .Mi a«+ 4| 7 (_,Ule-2m  coS^A)  }    (  , 

°      4ir    3ß2    3      ß2 t»l £ sinh(7r2V«)      ^ 

Accordingly, we can construct the grand potential for arbitrary g 

following equation (2.2). 

r • - 

-. '••:••• 

;.;-;.;•; 

•-,-, 

cos(^,  ff2k 

** "~^—~^K <A*15)   r 
•inM^) 

-   .. -      \i< 

.*-».• v^;7->;^:-::s:-vy>v 
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Appendix B Comparison with Dingle's Original Method 

tDingle's original method amounts tc replacing equation (2.6) by 

.  0U-2ac- 

!i •   (B.i) fr<u) • - —- I -  de   -: 
°      i^n-O*^,  [c-(n*i)]24r 

where the suffix D is attached for distinction. Note that the lower bound 

is «••». Dingle gave a physical ground for this, although not very convincing. 

The n-sum can be replaced by an  integral based on Poisson's sum rule.  The 

result is 

2-niks _        . i-       i- 2HiXS 

n°(U) -r - ÄJ J t      M* |d£ fd. *  , 2 in 
—^  o 

ßu-2ae ' 
(B.2) 

The '«-integral can be performed, but results in divergences in the E-integrel 

such as seen in 

P de .2*ikC Ind-*-**) 
Neglecting all these divergences, and after a somewhat lengthy calculation, 

we arrive at 

ft. 
rf>(Il),.*£L{ ? (.,^V^r  cos(-) 

n3  l-l 2 
t sinh(^) 

• 

^.r  .1 >. *? £ «.-2n [2(n-l)] .1 ,-,, +2a[g,<—)+ IBO   a (—)]} '2'2Y'   , n     *o n-1 
2Y 

(B.3) 

where 

g2(x) - P dx' J
Xdx"gQ(x") 

•.-.-.• 

• -.- -. 

• :•:• 

•-. 
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9oU) 
11 -1 x        9    -   ,*  ,2p-l     1       r 
± • ± tan    (£) •    I    Ktt v ~T~• 
2    TT r    p-i  P 3x • x2+r 

24 

b    -  (-) 
P 

_[VT;I 

(1-21-2P)BD 
P E 

<2p)! 
E    -   (-T12)" b 

n n (B.4) 

and B represents the Bernoulli number such as B    • -1, B- 1/6, etc. Note 

that the first term 1/2 of g (x), when introduced into the double Integral 

for g_(x), still causes a divergence.  We must neglect this divergence also. 

Then, for the case of PT>>1, the nonoscillating part of equation (B.3) yields 

the same dlamagnetlc terms as Dingle's (See his equation (4.2)).  Also, 

we can show that (B.3) is reduced to the correct expression in the limit 

r+q. 

In our present somewhat Improved method, the replacement of Dirac's 6 

function« by Lorentzian funcitons i« made nflcr 'A  (») is integrated twice 

by parts as In equation (2.7) where the lower bound of the c integration 

la kept to be 0+.  We then obtain 

OOCM) 
4Aa 

.e2 i (e2aC"n+D2      * k=-°° 
o+       v 

2" 
i--r 

o+        o+ 

de       e J (B.5) 

where E ' means summation excluding the term k = 0, and 

,<e) - | de' | de"go<e") (B,6) 

o+   o+ 
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Under the dHvA condition that \«l,  g (l/2y) is a power series in 

y2.  If 1/Y»r, i.e.,ux»l then 

gQ(c)^ 1 

ß2(0^ c
2/2 

In the region of e immediately close to ]/y .  Hence, we arrive at 

equations (A.9)! and (A.16).  Note in equation i.A. 9) , D(r) appears in 

the nonoscillating part, reducing the magnitude of the dian.agnetic 

susceptibility. 
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Appendix C Treatment for Absolute Zero 

In this section, we consider the limits a-"» and ß/T-»» and try to 

derive explicit limiting formula. For this purpose, we introduce 

simplifying notations such as 

?a  .        -lr asinx ,  _  ,  , 
— sin nx - tan L-: J - S .(x;a) , n l-acosx    -l 

n«l 

asinx Z   a sin nx • 
n-1 l-2acosx+a 

- - S   (x;a) 
2 O 

f    a" acosx-a cos nx < 
n»l l-2acosx+a 

- - C   (x.-a) 
2 O 

»      n „      a[(1+a )cosx-2a] Ian cos nx •  _    • Cl(x;a) 
n«l (l-2acosx+a ) 

?n                          a(l-a  )ainx _   „       , a n sin nx -  —- = S. (x;a) 
n-1 

for  |a|  < 1. 

2 2        1 (l-2acosx+a  ) 

Hence, Y versus V relation (3.7) reads as o 

(C.I) 

• •.• 

Si 

— - - + - S , (-;W)  ,    (a-*") 
'o 

(C2) 

It is easy to show that equation (3.13) leads to 

2 
SH  "  " Jj {?C1<Y

L'-W>+S1(Y
L'W>C

Y
L +2S_1(^;W)+2fSo(~W)][l + 2Co(~wn'1},   (<X-~,ß/T~>) 

(C3) 
We can also show that 

ST" is Cl+2Co(?!W,J   '   t*m) (C4) 

He remark that this entropy derivative yields the specific heat as follows: 

.v 

•- •. VlVOVsi',, • L". C'«\"« -V.*- •*_ ' Kl*. 
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2       2 
O. „ - ~ S„, - ~ TÜ+2C <J;W)}   , (per area) (C.5) 
A»H    Tl   T    o o y 

Not« that the first tern is the correct linear specific heat in the 

absence of magnetic field. This term is canceled out if there is no 

broadening of the Landau levels.  In fact, the specific heat decreases 

exponentially.• The reappearance of the linear specific heat is due to 

the introduction of level broadening which in effect suppresses the 

oscillating terms. The reappearance of the linear specific heat is in 

accord with Isihara and Kojima who treated the oscillating terms to be 

small even without broadening.  However, their assumption is valid only 

for relatively high temperature and low magnetic field. 

These limiting formulae can further be simplified if 1/y is an 

integer:  If M ?  1 and 1/y  - m , an integer, we find 

S - 0      n - -1, 0, 1 
n 

C - -^-*-      C, -    (-)mW, (C6) 
° i-i-)•* 1    [i-<-)Vl2 

Hence, 

it2  fcaV s 
H 3a [l.(.)»w]2 (C-V 

We obtain 

<« - 1  2wr dH   -     1 m  /even 
r,+^2F   f°r7  {odd (C9) 
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Although these expressions involve series, their convergence is very 

good in general due to the presence of the convergence factor W 

appearing through c and sf. 
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Figure Captions 

Fig. 1.    Variation of 1/Y- W/W-H as a function of 1/Y - 2itn/u H 

(H « 1, 2m - 1) at r - 2nr- 0.3 for three different temperatures. 

Here, u is the chemical potential, n is the electron density and 

WB l8 the effective Bo*11" magneton, r being a broadening parameter. 

Fig. 2.    Effect of broadening on 1/Y which is the chemical potential in the 

2 
unit« of the field energy at constant ir /am  1.5, where a -u H/kT. 

B 

This case corresponds approximately to 1 K and 2T. 

Fig. 3.    Magnetothermal oscillations for a fixed broadening parameter 

F «2irr- 0.3 at different temperatures corresponding to IT /a- 5.0 

2   hf 
(left ordinate) and  TT /a« 073 (right Ordinate).  The latter 

represents roughly the case of 2T and IK in the region of electron 

12  2 density of order 10 /cm . 

Fig. U. Broadening effects at absolute zero.   Left ordinate: r» 0.3. 

Right ordinate:  r- 3.0.  The arrow in each curve represents the 

ordinate to be used. 
m 

Fig. 5.    Magnetotheral oscillations for an elliptic density of states 

with r* - 2nr'- 0.6 and for » /« - 1.5.   r* is the broadening 

parameter in this case. 
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We remark that this entropy derivative yields the specific heat a. follow.: 
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